АНАЛИЗ ИЗМЕНЕНИЙ ФОТОСИНТЕЗА У ГОРОХА ПОСЕВНОГО, ВЫЗВАННЫХ ЭЛЕКТРИЧЕСКИМИ СИГНАЛАМИ В КОНТРОЛЕ И ПРИ ПОЧВЕННОЙ ЗАСУХЕ

<u>Юдина Л.М.¹, Попова А.Ю.¹, Сухова Е.М.¹, Сухов В.С.¹</u>

¹Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, г. Нижний Новгород, Россия lyubovsurova@mail.ru

Введение. Генерация и распространение электрических сигналов при локальном повреждении может вызвать быстрые системные физиологические изменения у растений. Известно, что электрические сигналы влияют на многие физиологические процессы, включая фотосинтез, результатом этих изменений является повышение устойчивости растений к действию различных стресс-факторов. Параметры электрических сигналов и быстрые физиологические изменения, вызванные этими сигналами, могут модифицироваться длительным действием стрессоров, однако этот вопрос недостаточно изучен.

Цель работы. Исследование параметров электрических сигналов, индуцированных локальным ожогом, и их влияние на параметры фотосинтеза в контрольных условиях и при недостатке воды в почве.

Материалы и методы. В качестве объектов исследования были использованы 2-3-недельные растения гороха посевного (Pisum sativum L.). Растения выращивали на песке при световом периоде свет/темнота – 16/8 ч и температуре 24°C в вегетационной комнате. Полив в контрольных условиях осуществлялся каждые 2 дня. Почвенную засуху создавали путём прекращения полива растений, параметры электрогенеза и фотосинтеза анализировали через 2 и 4 дня после прекращения полива. Фотосинтез и водный обмен изучали с помощью инфракрасного газоанализатора GFS-3000, РАМ-флуориметр Dual-PAM-100 и измерительной головки Cuvette 3010-Dual (Heinz Walz GmbH, Германия) на втором зрелом листе растения. Распространяющиеся электрические сигналы индуцировали локальным раздражением в виде ожога первого зрелого листа гороха открытым пламенем (3-4 с, около 1 см²). Электрические сигналы регистрировали с помощью AgCl-макроэлектродов и высокоомного усилителя биопотенциалов Мультитест ИПЛ-113 (Семико, Россия).

фотосинтетическая -1CO2 ассимиляция СО₂ – устьичная проводимость g_{H2O} листа,

F_v/F_m – максимальный квантовый выход фотосистемы II,

NPQ – нефотохимическое тушение флуоресценции,

LEF фотосинтетический линейный поток электронов, циклический поток CEF

электронов вокруг фотосистемы I. измерительные E_{2} электроды, электрод сравнения

Результаты.

Рис. 1. Схема расположения электродов для измерения

стрелкой показан

* - достоверное отличие от контроля (p < 0.05).

Рис. 3. Примеры индуцированных ожогом электрических сигналов у контрольных растений гороха (а - деполяризация), после 2 дней почвенной засухи (б - деполяризация) и после 4 дней почвенной засухи (в - гиперполяризация во втором листе, г - слабая деполяризация во втором листе). Стрелкой отмечено время локального ожога первого зрелого листа.

(a)

(б)

30 Ş

30

Время, мин

2 - Willy and a state of the second state of t

20

Время, мин

Время, мин

— LEF

— CEF

30

50 -

40 🖌

· 30 🛓

20 H

30

20

20

Время, мин

Время, мин

- NPQ

— LEF

- CEF

поверхностных электрических потенциалов, параметров локальный ожог первого зрелого фотосинтеза и устьичной проводимости листьев гороха в листа гороха, использующийся для контрольных условиях и через 2 и 4 дня почвенной засухи. генерации сигнала.

Красной

Рис. 8. Корреляционные коэффициенты связи между устьичной проводимостью листа (g_{H2O}) и ее изменениями при ожоге (Δg_{H2O}) (**a**) и между амплитудой электрических сигналов после ожога во втором зрелом листе (A₃) и Δg_{H2O} (**б**) у контрольных растений (n = 6), через 2 дня почвенной засухи (n = 6), через 4 дня почвенной засухи (n = 6) и для всех исследованных растений (n = 18). Отрицательные амплитуды соответствуют гиперполяризации. * - достоверная корреляция.

Рис. 4. Влияние почвенной засухи на амплитуды электрических сигналов, вызванных ожогом, на стебле рядом с первым зрелым листом (A_1) (**a**), на стебле рядом со вторым зрелым листом (A_2) (б), листовая пластинка второго зрелого листа (А₃) (в) у растений гороха (n = 6). Отрицательные амплитуды соответствуют гиперполяризации.

* - достоверное отличие от контроля (р < 0,05).

Рис. 5. Примеры изменений ассимиляции СО₂ (А), устьичной проводимости листа (g_{H2O}), нефотохимического тушения флуоресценции (NPQ), линейного потока электронов (LEF) и циклического потока электронов вокруг фотосистемы I (CEF) у контрольных растений гороха (а), через 2дня засухи (б) и через 4 дня засухи (в) (n = 6). Параметры измерялись во втором зрелом листе. Стрелкой отмечено время ожога первого зрелого листа.

Рис. 9. Корреляционные зависимости изменения фотосинтетической ассимиляции CO_2 (ΔA_{CO2}) на изменение устьичной проводимости листьев (Δg_{H2O}) контрольных растений (n = 6) (**a**), через 2 дня почвенной засухи (n = 6) (б), через 4 дня почвенной засухи (n = 6) (в) и для всех исследованных растений (n = 18) (г). R - коэффициент линейной корреляции.

Рис. 6. Влияние почвенной засухи на вызванные ожогом изменения фотосинтетической ассимиляции CO₂ (ΔA_{CO2}) (a), устьичной проводимости листа (Δg_{H2O}) (б), нефотохимическое тушение (ΔNPQ) (в), линейный поток электронов (ΔLEF) (г) и циклический поток электронов вокруг фотосистемы I (ΔCEF) (e) у гороха (n = 6). Параметры измеряли на втором зрелом листе, первый зрелый лист подвергся сжиганию. * - достоверное отличие от контроля (p < 0.05).

Рис. 7. Корреляционные зависимости вызванных ожогом изменений фотосинтетической ассимиляции CO_2 (ΔA_{CO2}) (**a**), нефотохимического тушения флуоресценции (ΔNPQ) (б), линейного потока электронов (ΔLEF) (в) и циклического потока электронов вокруг фотосистемы I (ΔCEF) (г) от амплитуд электрических сигналов в листовой пластинке второго зрелого листа (A₃) у гороха (n = 18). Отрицательные амплитуды соответствуют сигналу гиперполяризации. R - коэффициент линейной корреляции.

Рис. 10. Гипотетическая схема влияния локального ожога на процессы фотосинтеза в неповрежденных листьев в контрольных условиях (полив) и при сильном дефиците воды (почвенная засуха). pH_{ар} – pH апопласта.

Исследование выполнено при финансовой поддержке гранта РНФ № 21-74-10088.